作者:陈泽婉
文章来源:星火网校
最新编辑时间:
当算术里积累了大量的,关于各种数量问题的解法后,为了寻求有系统的、更普遍的方法,以解决各种数量关系的问题,就产生了以解代数方程的原理为中心问题的初等代数。下面我们来学习代数式的定义和运算。

代数式的定义
代数式是由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。例如:ax+2b,-2/3,b^2/26,√a+√2等。
代数式的运算法则
代数式的运算遵循以下规则:
1、合并同类项:把多项式中同类项合并成一项,叫做合并同类项。合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
2、去括号法则:括号前足“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;括号前是“—”号,把括号和它前面的“—”号去掉,括号里各项都改变符号。
3、添括号法则:添括导后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“—”号,
4、括到括号里的各项都改变符号。
以上就是代数式的定义和运算法则。在复数范围内,代数式分为有理式和无理式。其中,有理式又可以分成单项式和多项式。
发表评论